全部 標題 作者
關鍵詞 摘要

Agriculture  2013 

Antioxidants in Different Potato Genotypes: Effect of Drought and Wounding Stress

DOI: 10.3390/agriculture3010131

Keywords: tuber yield, quality, anthocyanins, peroxidase, antioxidants, abiotic stress

Full-Text   Cite this paper   Add to My Lib


Potatoes are regarded as a significant antioxidant source in human nutrition. However, different types of environmental stress may affect the level of antioxidants in their tuber tissue. In this study, two purple breeding clones and the yellow fleshed cultivar (cv.) Agave were grown in the glasshouse under control with drought stress conditions for two consecutive years. After harvest, the tubers were analysed for concentrations of antioxidants measured as ascorbic acid equivalent (ACE) and trolox equivalent (TXE) in fresh tissue and after wounding. In addition, the peroxidase enzyme (POD) activities and total amounts of anthocyanins (Ac) were assayed. Drought stress caused a significant decrease in tuber yield but had no significant effect on Ac, POD, ACE and TXE. Wounding stress significantly induced the POD activity in control and drought stressed tubers of all genotypes. Also the ACE and TXE were notably increased by wounding in cv. Agave. This was less pronounced in the purple clones which in general displayed a higher level of antioxidants. The results revealed significant differences between genotypes and that the effect of drought stress on the level of antioxidants is smaller than that of wounding stress.


[1]  Pham-Huy, L.A.; He, H.; Pham-Huyc, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 2008, 4, 89–96.
[2]  Johnson, I.T.; Williamson, G.; Musk, S.R.R. Anticarcinogenic factors in plant foods: A new class of nutrients? Nutr. Res. Rev. 1994, 7, 175–204, doi:10.1079/NRR19940011.
[3]  Block, G.; Patterson, B.; Subar, A. Fruit, vegetables and cancer prevention: A review of the epidemiological evidence. Nutr. Cancer 1991, 18, 1–29, doi:10.1080/01635589209514201.
[4]  Temple, N.J.; Gladwin, K. Fruit, vegetable, and the prevention of cancer: Research challenges. Nutrition 2003, 19, 467–470, doi:10.1016/S0899-9007(02)01037-7.
[5]  Thompson, H.J.; Heimendinger, J.; Haegele, A.; Sedlacek, S.M.; Gillette, C.; O’Neill, C.; Wolfe, P.; Conry, C. Effect of increased vegetable and fruit consumption on marker of oxidative cellular damage. Carcinogenesis 1999, 20, 2261–2266, doi:10.1093/carcin/20.12.2261.
[6]  Hatier, H.B.; Gould, K.S. Anthocyanin Function in Vegetative Organs. In Anthocyanins: Biosynthesis, Functions and Applications; Gould, K., Davies, K., Winefield, C., Eds.; Springer Science + Business Media, LLC: New York, NY, USA, 2009; pp. 1–19.
[7]  Stushnoff, C.; Holm, D.; Thompson, M.D.; Jiang, W.; Thompson, H.J.; Joyce, N.I.; Wilson, P. Antioxidant properties of cultivars and selections from the Colorado potato breeding program. Am. J. Potato Res. 2008, 85, 267–276, doi:10.1007/s12230-008-9032-4.
[8]  Brown, C.R. Antioxidants in potato. Am. J. Potato Res. 2005, 82, 163–172, doi:10.1007/BF02853654.
[9]  Friedman, M. Chemistry, biochemistry, and dietary role of potato phenols: A review. J. Agric. Food Chem. 1997, 45, 1523–1520, doi:10.1021/jf960900s.
[10]  Brown, C.R.; Culley, D.; Yang, C.P.; Navarre, R.A. Carotenoid and anthocyanin concentrations and associated antioxidant values in high pigment potatoes. Am. J. Potato Res. 2004, 81, 48.
[11]  Lachman, J.; Hamouz, K. Red and purple coloured potatoes as a significant antioxidant source in human nutrition: A review. Plant Soil Environ. 2005, 51, 477–482.
[12]  Wegener, C.B.; Jansen, G.; Jürgens, H.U.; Schütze, W. Special quality traits of coloured potato breeding clones: Anthocyanins, soluble phenols and antioxidant capacity. J. Sci. Food Agric. 2008, 89, 206–215.
[13]  Wang, H.; Cao, G.; Prior, R.L. Oxygen radical absorbing capacity of anthocyanins. J. Agric. Food Chem. 1997, 45, 304–309, doi:10.1021/jf960421t.
[14]  Wegener, C.B.; Jansen, G. Antioxidant capacity in cultivated and wild Solanum species: The effect of wound stress. Food Funct. 2010, 1, 209–218, doi:10.1039/c0fo00063a.
[15]  Grace, S.C. Phenolics as Antioxidants. In Antioxidants and Rreactive Oxygen Species; Smirnoff, N., Ed.; Blackwall Publishing Ltd.: Oxford, UK, 2005; pp. 141–168.
[16]  Vinson, J.A.; Demkosky, C.A.; Navarre, D.A.; Smyda, M.A. High-antioxidant potatoes: Acute in vivo antioxidant source and hypotensive agent in humans after supplementation to hypertensive subjects. J. Agric. Food Chem. 2012, 60, 6749–6754.
[17]  Dixon, R.A.; Paiva, N.L. Stress induced phenylpropanoid metabolism. Plant Cell 1995, 7, 1085–1097.
[18]  Bohnert, H.J.; Nelson, D.E.; Jensen, R.G. Adaptations to environmental stress. Plant Cell 1995, 7, 1099–1111.
[19]  Heldt, H.W. Photosynthesis is Associated with Water Consumption. In Plant Biochemistry; Heldt, H.W., Ed.; Spektrum Akademischer Verlag: Berlin, Germany, 2003; pp. 221–251.
[20]  Van Loon, C.D. The effect of water stress on potato growth, development and yield. Am. Potato J. 1981, 58, 51–69, doi:10.1007/BF02855380.
[21]  Levy, D. The response of potatoes to a single transient heat or drought stress imposed at different stages of tuber growth. Potato Res. 1985, 28, 415–424, doi:10.1007/BF02357516.
[22]  Vayda, M.E. Environmental Stress and Its Impact on Tuber Yield. In Potato Genetics; Bradshaw, J.E., Mackay, G.R., Eds.; CAB International: Wallingford, UK, 1994; pp. 239–261.
[23]  Hooper, L.; Cassidy, A. A review of the health care potential of bioactive compounds. J. Agric. Food Chem. 2006, 86, 1805–1813, doi:10.1002/jsfa.2599.
[24]  Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997, 2, 152–159, doi:10.1016/S1360-1385(97)01018-2.
[25]  Chalker-Scott, L. Environmental significance of anthocyanins in plant stress responses. Photochem. Phytobiol. 1999, 70, 1–9, doi:10.1111/j.1751-1097.1999.tb01944.x.
[26]  Camm, E.L.; McCallum, J.; Leaf, E.; Koupai-Abyazani, M.R. Cold induced purpling of Pinus contorta seedlings depend on previous day length treatment. Plant Cell Environ. 1993, 16, 761–764, doi:10.1111/j.1365-3040.1993.tb00497.x.
[27]  Hammerschmidt, R.; Nuckles, E.M.; Kuc, J. Association of enhanced peroxidase activity with systemic resistance of cucumber to Colletotrichum lagenarium. Physiol. Plant Pathol. 1982, 20, 73–82, doi:10.1016/0048-4059(82)90025-X.
[28]  Borchert, R. Time course of spatial distribution of phenylalanine ammonia-lyase and peroxidase activity in wounded potato tuber tissue. Plant Physiol. 1978, 62, 789–793, doi:10.1104/pp.62.5.789.
[29]  Espelie, K.E.; Franceschi, V.R.; Kolattukudy, P.E. Immocytochemical localization and time course of appearance of an anionic peroxidase associated with suberization in wound-healing potato tuber tissue. Plant Physiol. 1986, 81, 487–492, doi:10.1104/pp.81.2.487.
[30]  Cevahier, G.; Yentür, S.; Yazgan, M.; ünal, M.; Yilmazer, N. Peroxidase activity in relation to anthocyanin and chlorophyll content in juvenile and adult leaves of “MINI-STAR” Gazania splendens. Pak. J. Bot. 2004, 36, 603–609.
[31]  Reyes, L.F.; Cisneros-Zevallos, L. Wounding stress increases the phenolic content and antioxidant capacity of purple-flesh potatoes (Solanum tuberosum L.). J. Agric. Food Chem. 2003, 51, 5296–5300.
[32]  Chen, J.H.; Ho, C.T. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J. Agric. Food Chem. 1997, 45, 2374–2378, doi:10.1021/jf970055t.
[33]  Tudela, J.A.; Cantos, E.; Espin, J.C.; Tomas-Barberan, F.A.; Gil, M.I. Induction of antioxidant flavonol biosynthesis in fresh-cut potatoes: Effect of domestic cooking. J. Agric. Food Chem. 2002, 50, 5925–5931.
[34]  Ghanekar, A.S.; Padwal-Desai, S.R.; Nadkarni, G.B. The involvement of phenolics and phytoalexins in resistance of potato to soft rot. Potato Res. 1984, 27, 189–199, doi:10.1007/BF02357464.
[35]  Vance, C.P.; Kirk, T.K.; Sherwood, R.T. Lignification as a mechanism of disease resistance. Ann. Rev. Phytopathol. 1980, 18, 259–288, doi:10.1146/annurev.py.18.090180.001355.
[36]  Lulai, E.C. Tuber Periderm and Disease Resistance. In Compendium of Potato Diseases; Stevenson, W.R., Loria, R., Franc, G.D., Weingartner, D.P., Eds.; APS Press: St. Paul, MN, USA, 2001; pp. 3–6.
[37]  Meier, U. Growth stages of mono- and dicotyledonous plants. In BBC—Monograph; Meier, U., Ed.; Blackwall Publishing Ltd.: Berlin, Germany, 1997; p. 48.
[38]  Fuleki, T.; Francis, F.J. Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanins in cranberries. J. Food Sci. 1968, 33, 72–77, doi:10.1111/j.1365-2621.1968.tb00887.x.
[39]  Bi, J.L.; Felton, G.W.; Murphy, J.B.; Howles, P.A.; Dixon, R.A.; Lamb, C.J. Do plant phenolics confer resistance to specialist and generalist insect herbivores? J. Agric. Food Chem. 1997, 45, 4500–4504, doi:10.1021/jf970555m.
[40]  Popov, I.N.; Lewin, G. Photochemiluminescent detection of antiradical activity: IV. Testing of lipid-soluble antioxidants. J. Biochem. Biophys. Methods 1996, 31, 1–8.
[41]  Buckenhüskes, H.J. Nutritionally relevant aspects of potatoes and potato constituents. In Potato in Progress; Haverkort, A.J., Struik, P.C., Eds.; Academic Publishers: Wageningen, The Netherlands, 2005; pp. 17–26.
[42]  Jansen, G.; Flamme, W.; Schüler, K.; Vandrey, M. Tuber and starch quality of wild and cultivated potato species and cultivars. Potato Res. 2001, 44, 137–146, doi:10.1007/BF02410100.


comments powered by Disqus

Contact Us



微信:OALib Journal