全部 標題 作者
關鍵詞 摘要

Agriculture  2013 

Studies on Mitigating Lipid Oxidation Reactions in a Value-Added Dairy Product Using a Standardized Cranberry Extract

DOI: 10.3390/agriculture3020236

Keywords: cranberry, antioxidant activity, lipid peroxidation, fresh dairy products

Full-Text   Cite this paper   Add to My Lib


A standardized whole cranberry extract (WCE) was used to stabilize a model sunflower-casein emulsion prototype for future formulation activities with a fresh cream cheese product. The WCE contained total organic acids (20% w/w) and polyphenols (5%), the latter consisting of total anthocyanins (10%, w/w) and proanthocyanidins (12% w/w). Antioxidant capacity of the WCE was determined by ORAC, (hydrophilic ORAC = 348.31 ± 33.45 μmol of Trolox equivalents/g; lipophilic ORAC = 11.02 ± 0.85 μmol of Trolox equivalents/g). WCE was effective at stabilizing the model emulsion at a level of 0.375% (w/w), yielding a final pH of 5.6. Generation of initial lipid peroxidation products, hexanal and pentanal was inhibited by 92.4% ± 3.9% and 66.6% ± 5.3% ( n = 3), respectively, when emulsions containing WCE were incubated at 50 °C for 90 h. This information was useful for formulating a fresh cream cheese product containing WCE to produce value-added potential and good self-life. The standardized WCE gave a final pH of 5.6 for the cheese premix and also significantly ( P < 0.05) lowered both the PV and CD after 28 and 21 days at 4 °C storage, respectively, compared to untreated control. We conclude that there are important functional role(s) for cranberry constituents when presented as a standardized ingredient for producing value-added, stable fresh dairy products.


[1]  Moore, R.L.; Duncan, S.E.; Rasor, A.S.; Eigel, W.N.; O’Keefe, S.F. Oxidative stability of an extended shelf-life dairy-based beverage system designed to contribute to heart health. J. Dairy Sci. 2012, 95, 6242–6251, doi:10.3168/jds.2012-5364.
[2]  Howell, A.B. Bioactive compounds in cranberry and their role in prevention of urinary tract infections. Mol. Nutr. Food Res. 2007, 51, 732–737, doi:10.1002/mnfr.200700038.
[3]  Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L.H. Fundamentals of Cheese Science; Aspen Publishers: Gaithersburg, MD, USA, 2000.
[4]  Fedele, E.; Bergamo, P. Protein and lipid oxidative stresses during cheese manufacture. J. Food Sci. 2001, 66, 932–935, doi:10.1111/j.1365-2621.2001.tb08214.x.
[5]  McClements, D.J.; Decker, E.A. Lipid oxidation in oil-in-water emulsions: Impact of molecular environment on chemical reactions in heterogeneous food systems. J. Food Sci. 2000, 65, 1270–1282, doi:10.1111/j.1365-2621.2000.tb10596.x.
[6]  Soto-Cantu, C.D.; Graciano-Verdugo, A.Z.; Peralta, E.; Islas-Rubio, A.R.; Gonzalez-Cordova, A.; Gonzalez-Leon, A. Release of butylated hydroxytoluene from an active film packaging to asadero cheese and its effect on oxidation and odor stability. J. Dairy Sci. 2008, 91, 11–19, doi:10.3168/jds.2007-0464.
[7]  Bandyopadhyay, M.; Chakraborty, R.; Raychaudhuri, U. Antioxidant activity of natural plant sources in dairy dessert (sandesh) under thermal treatment. Food Sci. Tech. 2008, 41, 816–825.
[8]  Velasco, J.; Dobarganes, M.C.; Marquez-Ruiz, G. Antioxidant activity of phenolic compounds in sunflower oil-in-water emulsions containing sodium caseinate and lactose. Eur. J. Lipid Sci. Technol. 2004, 106, 4874–4882.
[9]  Decker, E.A. Antioxidant mechanisms. In Food Lipids: Chemistry, Nutrition, and Biotechnology; Akoh, C.C., Min, D.B., Eds.; Marcel Dekker: New York, NY, USA, 1998; pp. 397–421.
[10]  Rice-Evans, C.; Miller, N.; Paganga, G. Antioxidant properties of phenolic compounds. Trends in Plant Sci. 1997, 2, 152–159, doi:10.1016/S1360-1385(97)01018-2.
[11]  Vvedenskaya, I.O.; Vorsa, N. Flavonoid composition over fruit development and maturation in american cranberry, vaccinium macrocarpon ait. Plant Sci. 2004, 167, 1043–1054, doi:10.1016/j.plantsci.2004.06.001.
[12]  Hosseini-Beheshti, E.; Lund, S.; Kitts, D.D. Characterization of antioxidant capacity from fruits with distinct anthocyanin biosynthetic pathways. J. Nutr. Food Sci. 2012, 2, 122.
[13]  Zheng, W.; Wang, S.Y. Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. J. Agri. Food Chem. 2003, 51, 502–509, doi:10.1021/jf020728u.
[14]  Satue-Gracia, M.T.; Heinonen, M.; Frankel, E.N. Anthocyanins as antioxidants on human low-density lipoprotein and lecithin-liposome systems. J. Agri. Food Chem. 1997, 45, 3362–3367, doi:10.1021/jf970234a.
[15]  Seeram, N.P.; Nair, M.G. Inhibition of lipid peroxidation and structure-activity-related studies of the dietary constituents anthocyanins, anthocyanidins, and catechins. J. Agri. Food Chem. 2002, 50, 5308–5312, doi:10.1021/jf025671q.
[16]  Vattem, D.A.; Ghaedian, R.; Shetty, K. Enhancing health benefits of berries through phenolic antioxidant enrichment: Focus on cranberry. Asia Pac. J. Clin. Nutr. 2005, 14, 120–130.
[17]  Prior, R.L.; Lazarus, S.A.; Cao, G.; Muccitelli, H.; Hammerstone, J.F. Identification of procyanidins and anthocyanins in blueberries and cranberries (Vaccinium spp.) using high-performance liquid chromatography/mass spectrometry. J. Agri. Food Chem. 2001, 49, 1270–1276.
[18]  Porter, M.L.; Krueger, C.G.; Wiebe, D.A.; Cunningham, D.G.; Reed, J.D. Cranberry proanthocyanidins associate with low-density lipoprotein and inhibit in vitro Cu2+-induced oxidation. J. Sci. Food Agri. 2001, 81, 1306–1313, doi:10.1002/jsfa.940.
[19]  ?kerget, M.; Kotnik, P.; Hadolin, M.; Hra?, A.R.; Simoni?, M.; Knez, ?. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem. 2005, 89, 191–198, doi:10.1016/j.foodchem.2004.02.025.
[20]  Vvedenskaya, I.O.; Rosen, R.T.; Guido, J.E.; Russell, D.J.; Mills, K.A.; Vorsa, N. Characterization of flavonols in cranberry (Vaccinium macrocarpon) powder. J. Agric. Food Chem. 2004, 52, 188–195, doi:10.1021/jf034970s.
[21]  Leusink, G.L.; Kitts, D.D.; Yaghmaee, P.; Durance, T.D. Retention of antioxidant capacity of vacuum microwave dried cranberry. J. Food Sci. 2010, 75, 311–316.
[22]  Shahidi, F.; Naczk, M.; Griffiths, W. Food Phenolics: Sources, Chemistry, Effects, Applications; Technomic Publishing Company: Lancaster, PA, USA, 1995.
[23]  Xagorari, A.; Papapetropoulos, A.; Mauromatis, A.; Economou, M.; Fotsis, T.; Roussos, C. Luteolin inhibits an endotoxin-stimulated phosphorylation cascade and proinflammatory cytokine production in macrophages. J. Pharmacol. Exp. Ther. 2001, 296, 181–187.
[24]  Wilson, T.; Porcari, J.P.; Harbin, D. Cranberry extract inhibits low density lipoprotein oxidation. Life Sci. 1998, 62, 381–386, doi:10.1016/S0024-3205(98)00204-5.
[25]  Reed, J. Cranberry flavonoids, atherosclerosis and cardiovascular health. Crit. Rev. Food Sci. Nutr. 2002, 42, 301–316, doi:10.1080/10408390209351919.
[26]  Yan, X.; Murphy, B.T.; Hammond, G.B.; Vinson, J.A.; Neto, C.C. Antioxidant activities and antitumor screening of extracts from cranberry fruit (Vaccinium macrocarpon). J. Agri. Food Chem. 2002, 50, 5844–5849, doi:10.1021/jf0202234.
[27]  Youdim, K.A.; McDonald, J.; Kalt, W.; Joseph, J.A. Potential role of dietary flavonoids in reducing microvascular endothelium vulnerability to oxidative and inflammatory insults. J. Nutr. Biochem. 2002, 13, 282–288, doi:10.1016/S0955-2863(01)00221-2.
[28]  Seeram, N.P.; Adams, L.S.; Hardy, M.L.; Heber, D. Total cranberry extract versus its phytochemical constituents: Antiproliferative and synergistic effects against human tumor cell lines. J. Agric. Food Chem. 2004, 52, 2512–2517, doi:10.1021/jf0352778.
[29]  Girard, K.K.; Sinha, N.K. Cranberry, blueberry, currant, and gooseberry. In Handbook of Fruits and Fruit Processing; Hui, Y.H., Ed.; Blackwell Publishing: New York, NY, USA, 2006; pp. 369–390.
[30]  Barrett, D.M.; Somogy, L.P.; Ramaswamy, H.S. Processing Fruits; CRC Press: Boca Raton, FL, USA, 2004.
[31]  Kuhnau, J. The flavonoids—A class of semi-essential food components: Their role in human nutrition. World Rev. Nutr. Diet. 1976, 24, 117–119.
[32]  Lee, C.H.; Reed, J.D.; Richard, M.P. Ability of various polyphenolic classes from cranberry to inhibit lipid oxidation in mechanically separated turkey and cooked ground pork. J. Muscle Foods 2006, 17, 248–266, doi:10.1111/j.1745-4573.2006.00048.x.
[33]  Huang, S.W.; Frankel, E.N.; German, J.B. Antioxidant activity of. alpha.-and. gamma.-tocopherols in bulk oils and in oil-in-water emulsions. J. Agric. Food Chem. 1994, 42, 2108–2114, doi:10.1021/jf00046a007.
[34]  Kristensen, D.; Hansen, E.; Arndal, A.; Trinderup, R.A.; Skibsted, L.H. Influence of light and temperature on the color and oxidative stability of processed cheese. Int. Dairy J. 2001, 11, 837–843, doi:10.1016/S0958-6946(01)00105-4.
[35]  Van Aardt, M.; Duncan, S.E.; Marcy, J.E.; Long, T.E.; O'Keefe, S.F.; Nielsen-Sims, S.R. Aroma analysis of light-exposed milk stored with and without natural and synthetic antioxidants. J. Dairy Sci. 2005, 88, 881–890, doi:10.3168/jds.S0022-0302(05)72754-5.
[36]  Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method. Enzymoly 1999, 299, 152–177, doi:10.1016/S0076-6879(99)99017-1.
[37]  Wrolstad, R.E.; Giusti, M.M. Characterization and measurement of anthocyanins by UV-visible spectroscopy. In Food Analytical Chemistry; Wrolstad, R.E., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2001.
[38]  Gessner, M.O.; Steiner, D. Acid butanol assay for proanthocyanidins (condensed tannins). In Methods to Study Litter Decomposition: A Practical Guide; Graca, M.A.S., Barlocher, F., Gessner, M.O., Eds.; Springer Verlag GmbH: Heidelberg, Germany, 2005; pp. 107–114.
[39]  Kitts, D.D.; Hu, C. Biological and chemical assessment of antioxidant activity of sugar-lysine model maillard reaction products. Ann. N. Y. Acad. Sci. 2005, 1043, 501–512, doi:10.1196/annals.1333.057.
[40]  Davalos, A.; Gomez-Cordoves, C.; Bartolome, B. Extending applicability of the oxygen radical absorbance capacity (ORAC-fluorescein) assay. J. Agric. Food Chem. 2004, 52, 48–54, doi:10.1021/jf0305231.
[41]  AOCS. Method Ti. In Official Methods and Recommended Practices of the American Oil Chemists Society, 5th ed.; AOCS Press: Urbana, IL, USA, 1998; pp. 1a–64.
[42]  Cuvelier, M.E.; Lagunes-Galvez, L.; Berset, C. Do antioxidants improve the oxidative stability of oil-in-water emulsions? J. Am. Oil Chem. Soc. 2003, 80, 1101–1105, doi:10.1007/s11746-003-0826-6.
[43]  AOAC. Official Methods of Analysis of AOAC International; AOAC International: Arlington, MA, USA, 1995.
[44]  Bot, A.; Kleinherenbrink, F.A.M.; Mellema, M.; Magnani, C.K. Cream cheese as an acidified protein-stabilized emulsion gel. In Handbook of Food Products Manufacturing; Hui, Y.H., Ed.; Wiley-Interscience: New York, NY, USA, 2007; pp. 651–672.


comments powered by Disqus

Contact Us



微信:OALib Journal