全部 標題 作者
關鍵詞 摘要

Agriculture  2013 

Soil Erosion from Agriculture and Mining: A Threat to Tropical Stream Ecosystems

DOI: 10.3390/agriculture3040660

Keywords: agricultural catchments, headwater stream, siltation, suspended sediment, turbidity, environmental impact, biodiversity

Full-Text   Cite this paper   Add to My Lib


In tropical countries soil erosion is often increased due to high erodibility of geologically old and weathered soils; intensive rainfall; inappropriate soil management; removal of forest vegetation cover; and mining activities. Stream ecosystems draining agricultural or mining areas are often severely impacted by the high loads of eroded material entering the stream channel; increasing turbidity; covering instream habitat and affecting the riparian zone; and thereby modifying habitat and food web structures. The biodiversity is severely threatened by these negative effects as the aquatic and riparian fauna and flora are not adapted to cope with excessive rates of erosion and sedimentation. Eroded material may also be polluted by pesticides or heavy metals that have an aggravating effect on functions and ecosystem services. Loss of superficial material and deepening of erosion gullies impoverish the nutrient and carbon contents of the soils; and lower the water tables; causing a “lose-lose” situation for agricultural productivity and environmental integrity. Several examples show how to interrupt this vicious cycle by integrated catchment management and by combining “green” and “hard” engineering for habitat restoration. In this review; we summarize current findings on this issue from tropical countries with a focus on case studies from Suriname and Brazil.


[1]  Lal, R. Soils and food sufficiency. A review. Agron. Sustain. Dev.?2009, 29, 113–133, doi:10.1051/agro:2008044.
[2]  Quinton, J.N.; Govers, G.; Van Oost, K.; Bardgett, R.D. The impact of agricultural soil erosion on biogeochemical cycling. Nature Geosci.?2010, 3, 311–314, doi:10.1038/ngeo838.
[3]  Lal, R. Soil erosion and the global carbon budget. Environ. Inter.?2003, 29, 437–450, doi:10.1016/S0160-4120(02)00192-7.
[4]  Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Christ, S.; Shrpirtz, L.; Fitton, L.; Saffouri, R.; et al. Environmental and economic costs of soil erosion and conservation benefits. Science?1995, 267, 1117–1123, doi:10.1126/science.267.5201.1117.
[5]  Sioli, H. Das Wasser im Amazonasgebiet. Forsch. Fortschr.?1950, 26, 274–280.
[6]  Ryan, P.A. Environmental effects of sediments on New Zealand streams: A review. New Zealand J. Mar. Freshwater Res.?1991, 25, 207–221, doi:10.1080/00288330.1991.9516472.
[7]  Malmqvist, B.; Rundle, S. Threats to the running water ecosystems of the world. Environ. Conserv.?2002, 29, 134–153.
[8]  Castello, L.; McGrath, D.G.; Hess, L.L.; Coe, M.T.; Lefebre, P.A.; Petry, P.; Macedo, M.N.; Reno, V.F.; Arantes, C.C. The vulnerability of Amazon freshwater ecosystems. Conserv. Lett.?2013, 6, 217–229, doi:10.1111/conl.12008.
[9]  Boulton, A.J.; Boyero, L.; Covich, A.P.; Dobson, M.; Lake, P.S.; Pearson, R.G. Are Tropical Streams Ecologically Different from Temperate Streams? In Tropical Stream Ecology; Dudgeon, D., Ed.; Elsevier: Amsterdam, the Netherlands, 2008; pp. 257–284.
[10]  Wantzen, K.M.; Junk, W.J. The Importance of Stream-Wetland-Systems for Biodiversity: A Tropical Perspective. In Biodiversity in Wetlands: Assessment, Function and Conservation; Gopal, B., Junk, W.J., Davies, J.A., Eds.; Backhuys: Leiden, the Netherlands, 2000; pp. 11–34.
[11]  Wantzen, K.M.; Mathooko, J.; Yule, C.; Pringle, C.M. Organic Matter Processing in Tropical Streams. In Tropical Stream Ecology; Dudgeon, D., Ed.; Elsevier: Amsterdam, the Netherlands, 2008; pp. 43–64.
[12]  Jacobsen, D.; Encalada, A. The macroinvertebrate fauna of Ecuadorian highland streams in the wet and dry season. Arch. Hydrobiol.?1998, 142, 53–70.
[13]  Lewis, W.M., Jr.; Hamilton, S.K.; Saunders, J.F., III. Rivers of Northern South America. In River and Stream Ecosystems; Cushing, C.E., Cummins, K.W., Minshall, G.W., Eds.; Elsevier: New York, NY, USA, 1995; pp. 219–256.
[14]  Wantzen, K.M. Physical pollution: Effects of gully erosion in a tropical clear-water stream. Aquat. Conserv.?2006, 16, 733–749, doi:10.1002/aqc.813.
[15]  Wantzen, K.M. Cerrado Streams—Characteristics of a threatened freshwater ecosystem type on the tertiary shields of South America. Amazoniana?2003, 17, 485–502.
[16]  Johnson, D.L.; Lewis, L.A. Land Degradation: Creation and Destruction; Blackwell: London, UK, 1995; pp. 1–335.
[17]  Nepstad, D.; McGrath, D.; Alencar, A.; Barros, A.C.; Carvalho, G.; Santilli, M.; Vera Diaz, M.C. Frontier governance in Amazonia. Science?2009, 295, 629–631.
[18]  Veiga, M.M.; Hinton, J.J. Abandoned artisanal gold mines in the Brazilian Amazon: A legacy of mercury pollution. Nat. Resour. For.?2002, 26, 13–24.
[19]  Heemskerk, M. Livelihood decision making and environmental degradation: Small-scale gold mining in the Suriname Amazon. Soc. Nat. Resour.?2002, 15, 327–344, doi:10.1080/089419202753570819.
[20]  Swenson, J.J.; Carter, C.E.; Domec, J.C.; Delgado, C.I. Gold mining in the Peruvian Amazon: Global prices, deforestation, and mercury imports. PLoS One?2011, 6, doi:10.1371/journal.pone.0018875.
[21]  Ouboter, P.E.; Landburg, G.; Quik, J.; Mol, J.; van der Lugt, F. Mercury levels in pristine and gold mining impacted aquatic ecosystems of Suriname, South America. Ambio?2012, 41, 873–882, doi:10.1007/s13280-012-0299-9.
[22]  Balogh, S.J.; Meyer, M.L.; Johnson, D.K. Transport of mercury in three contrasting river basins. Environ. Sci. Technol.?1998, 32, 456–462, doi:10.1021/es970506q.
[23]  Secretaria de Assuntos Estratégicos (SAE) Impacto da revis?o do Código Florestal: como viabilizar o grande desafio adiante? Internet report. Available online: http://www.sae.gov.br/site/?p=15735 (accessed on 24 September 2013).
[24]  Silva, J.A.A.; Nobre, A.D.; Manzatto, C.V.; Joly, C.A.; Rodrigues, R.R.; Skorupa, L.A.; Nobre, C.A.; Ahrens, S.; May, P.H.; Sá, T.D.A.; et al. O Código Florestal e a Ciência: Contribui??o para o Diálogo; Sociedade Brasileira para o Progresso da Ciência & Academia Brasileira de Ciências: S?o Paulo, Brazil, 2011; pp. 1–124.
[25]  Wantzen, K.M.; Siqueira, A.; Nunes da Cunha, C.; Sa, M.F.P. Stream-valley systems of the Brazilian Cerrado: Impact assessment and conservation scheme. Aquat. Conserv.?2006, 16, 713–732, doi:10.1002/aqc.807.
[26]  Harding, J.S.; Benfield, E.F.; Bolstad, P.V.; Helfman, G.S.; Jones, E.B.D., III. Stream biodiversity: The ghost of land use past. Proc. Natl. Acad. Sci. USA?1998, 95, 14843–14847, doi:10.1073/pnas.95.25.14843.
[27]  Batlle-Bayer, L. Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: A review. Agric. Ecosyst. Environ.?2010, 137, 47–58, doi:10.1016/j.agee.2010.02.003.
[28]  Couto, E.G. O uso da terra e o garimpo na bacia do rio Sao Lourenco, Mato Grosso: Reflexos No Ambiente; FEMA/UFMT-CCA: Cuiabá, Mato Grosso, Brazil, 1990; p. 206.
[29]  Wantzen, K.M. Influence of Man-Made Siltation on Habitat Structure and Biotic Communities of Cerrado Streams of Mato Grosso. Ph.D. Thesis, Herbert Utz Verlag, Munich, 1997.
[30]  Wantzen, K.M. Effects of siltation on benthic communities in clear water streams in Mato Grosso, Brazil. Verh. Int. Ver. Limnol.?1998, 26, 1155–1159.
[31]  DellaSala, D.A.; Karr, J.R.; Olson, D.M. Roadless areas and clean water. J. Soil Water Conserv.?2011, 66, 78–84, doi:10.2489/jswc.66.3.78A.
[32]  Peterson, G.D.; Heemskerk, M. Deforestation and forest regeneration following small-scale gold mining in the Amazon: The case of Suriname. Environ. Conserv.?2001, 28, 117–126.
[33]  Centrum voor Landbouwkundig Onderzoek in Suriname (CELOS). Assessments of the extend of land categories, land uses and changes for the Second National Communication—AFOLU GHC Inventory 2011. CELOS, Natural Resources and Environmental Assessment: Paramarib, Suriname, 2011. unpublished work.
[34]  Mol, J.H.; Ouboter, P.E. Downstream effects of erosion from small-scale gold mining on the instream habitat and fish community of a small neotropical rainforest stream. Conserv. Biol.?2004, 18, 201–214, doi:10.1111/j.1523-1739.2004.00080.x.
[35]  Power, M.E. The importance of sediment in the grazing ecology and size class interactions of the armored catfish, Ancistrus spinosus. Environ. Biol. Fish.?1984, 10, 173–181, doi:10.1007/BF00001124.
[36]  Davies-Colley, R.J.; Smith, D.G. Turbidity, suspended sediment, and water clarity: A review. J. Amer. Water Resources Ass.?2001, 37, 1085–1101, doi:10.1111/j.1752-1688.2001.tb03624.x.
[37]  Aksnes, D.L.; Nejstgaard, J.; S?dberg, E.; S?rnes, T. Optical control of fish and zooplankton populations. Limnol. Oceanogr.?2004, 49, 233–238, doi:10.4319/lo.2004.49.1.0233.
[38]  Walker, I. Amazonian Streams and Small Rivers. In Limnology in Brazil; Tundisi, J.G., Bicudo, C.E.M., Matsamura-Tundisi, T., Eds.; Brazilian Academy of Sciences: Rio de Janeiro, Brazil, 1995; pp. 167–194.
[39]  Lau, D.C.P.; Leung, K.M.Y.; Dudgeon, D. What does stable isotope analysis reveal about trophic relationships and the relative importance of allochthonous and autochthonous resources in tropical streams? A synthetic study from Hong Kong. Freshwater Biol.?2009, 54, 127–141, doi:10.1111/j.1365-2427.2008.02099.x.
[40]  Brito, E.F.; Moulton, T.P.; de Souza, M.L.; Bunn, S.E. Stable isotope analysis indicates microalgae as the predominant food source of fauna in a coastal forest stream, south-east Brazil. Austral Ecol.?2006, 31, 623–633, doi:10.1111/j.1442-9993.2006.01610.x.
[41]  Newcombe, C.P.; MacDonald, D.D. Effects of suspended sediments on aquatic ecosystems. North Amer. J. Fish. Manage.?1991, 11, 72–82, doi:10.1577/1548-8675(1991)011<0072:EOSSOA>2.3.CO;2.
[42]  Waters, T.F. Sediments in Streams—Sources, Biological Effects, and Control; American Fisheries Society: Bethesda, MD, USA, 1995; p. 250.
[43]  Kleeberg, A.; K?hler, J.A.N.; Sukhodolova, T.; Sukhodolov, A. Effects of aquatic macrophytes on organic matter deposition, resuspension and phosphorus entrainment in a lowland river. Freshwater Biol.?2010, 55, 326–345, doi:10.1111/j.1365-2427.2009.02277.x.
[44]  Brookes, A. Response of aquatic vegetation to sedimentation downstream from river channelisation works in England and Wales. Biol. Conserv.?1986, 38, 351–367, doi:10.1016/0006-3207(86)90060-1.
[45]  Wantzen, K.M.; Junk, W.J. Aquatic-terrestrial linkages from streams to rivers: Biotic hot spots and hot moments. Arch. Hydrobiol. Suppl.?2006, 158, 595–611.
[46]  Horeau, V.; Cerdan, P.; Champeau, A.; Richard, S. Importance of aquatic invertebrates in the diet of rapids-dwelling fish in the Sinnamary River, French Guiana. J. Trop. Ecol.?1998, 14, 851–864, doi:10.1017/S0266467498000613.
[47]  Odinetz Collart, O.; Jégu, M.; Thatcher, V.; Tavares, A.S. Les prairies aquatiques de l’Amazonie bresilienne. RSTOM Actualités?1996, 49, 8–14.
[48]  Cope, W.G.; Bringolf, R.B.; Buchwalter, D.B.; Newton, T.J.; Ingersoll, C.G.; Wang, N.; Augspurger, T.; Dwyer, F.J.; Barnhart, M.C.; Neves, R.J.; et al. Differential exposure, duration, and sensitivity of unionoidean bivalve life stages to environmental contaminants. J. North Amer. Benthological Soc.?2008, 27, 451–462, doi:10.1899/07-094.1.
[49]  Wantzen, K.M.; Pinto-Silva, V. Uso de substratos artificiais para macroinvertebrados bent?nicos para a avalia??o do impacto de assoreamento em nascentes dos tributrios do Pantanal do Mato Grosso, Brasil. Revista Brasileira de Recursos Hídricos?2006, 11, 99–107.
[50]  Bash, J. Effects of Turbidity and Suspended Solids on Salmonids; Center for Streamside Studies, University of Washington: Seattle, WA, USA, 2001; p. 74.
[51]  Lloyd, D.S. Turbidity as a water quality standard for salmonid habitats in Alska. North Amer. J. Fish. Manage.?1987, 7, 34–45, doi:10.1577/1548-8659(1987)7<34:TAAWQS>2.0.CO;2.
[52]  Bruton, M.N. The effects of suspensoids on fish. Hydrobiologia?1985, 125, 221–242, doi:10.1007/BF00045937.
[53]  Gende, S.M.; Edwards, R.T.; Willson, M.F.; Wipfli, M.S. Pacific salmon in aquatic and terrestrial ecosystems. BioScience?2002, 52, 917–928, doi:10.1641/0006-3568(2002)052[0917:PSIAAT]2.0.CO;2.
[54]  Carolsfeld, J.; Harvey, C.; Ross, C.; Baer, A. Migratory Fishes of South America: Biology, Fisheries and Conservation; International Development Centre & the World Bank: Ottawa, Ontario, Canada, 2003; p. 372.
[55]  Cederholm, C.J.; Salo, E.O. The Effects of Logging Road Landslide Siltation on the Salmon and Trout Spawning Gravels of Stequaleho Creek and Clearwater River Basin, Jefferson County, Washington, 1972–1978; Fisheries Research Institute, University of Washington: Seattle, WA, USA, 1979; p. 90.
[56]  Van der Sluijs, I.; Gray, S.M.; Amorim, M.C.P.; Candolin, U.; Hendry, A.P.; Krahe, R.; Maan, M.F.; Utne-Palm, A.C.; Wagner, H.J.; Wong, N.B.M. Communication in troubled waters: Responses of fish communication systems to changing environments. Evol. Ecol.?2011, 25, 623–640, doi:10.1007/s10682-010-9450-x.
[57]  Keenleyside, M.H.A. Some aspects of schooling in fish. Behaviour?1955, 8, 183–249, doi:10.1163/156853955X00229.
[58]  Keenleyside, M.H.A.; Bietz, B.F. The reproductive behavior of Aequidens vittatus (Pisces, Cichlidae) in Surinam, South America. Environ. Biol. Fish.?1981, 6, 87–94, doi:10.1007/BF00001802.
[59]  Seehausen, O.; Van Alphen, J.J.M.; Witte, F. Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science?1997, 277, 1808–1811, doi:10.1126/science.277.5333.1808.
[60]  Dias, A.M.; Tejerina-Garro, F.L. Changes in the structure of fish assemblages in streams along an undisturbed-impacted gradient, upper Parana River basin, Central Brazil. Neotrop. Ichthyol.?2010, 8, 587–598, doi:10.1590/S1679-62252010000300003.
[61]  Mol, J.H.; You, K.W.T.; Vrede, I.; Flynn, A.; Ouboter, P.; van der Lugt, F. Fishes of Lely and Nassau Mountains, Suriname. In a Rapid Biological Assessment of the Lely and Nassau Plateaus, Suriname (with Additional Information on the Brownsberg Plateau); Alonso, L.E., Mol, J.H., Eds.; Conservation International: Arlington, TX, USA, 2007; pp. 107–118.
[62]  Lujan, N.K.; Roach, K.A.; Jacobsen, D.; Winemiller, K.O.; Vargas, V.M.; Ching, V.R.; Maestre, J.A. Aquatic community structure across an Andes-to-Amazon fluvial gradient. J. Biogeogr.?2013.
[63]  Moyle, P.B.; Leidy, R.A. Loss of Biodiversity in Aquatic Ecosystems: Evidence from Fish Faunas. In Conservation Biology; Fiedler, P.L., Jain, S.K., Eds.; Chapman & Hall: New York, NY, USA, 1992; pp. 127–169.
[64]  Burcher, C.L.; McTammany, M.E.; Benfield, E.F.; Helfman, G.S. Fish assemblage responses to forest cover. Environ. Manage.?2008, 41, 336–346, doi:10.1007/s00267-007-9049-3.
[65]  Casatti, L.; Ferreira, C.P.; Carvalho, F.R. Grass-Dominated stream sides exhibit low fish diversity and dominance by guppies: An assessment of two tropical pasture river basins. Hydrobiologia?2009, 632, 273–283, doi:10.1007/s10750-009-9849-y.
[66]  Wantzen, K.M.; Nunes da Cunha, C.; Siqueira, A.J.B. Cerrado Stream Valleys and their Vegetation: Structure, Impacts by Erosion and Recuperation Strategies. In the Pantanal: Ecology, Biodiversity and Sustainable Management of a Large Neotropical Seasonal Wetland; Junk, W.J., da Silva, C.J., Nunes da Cunha, C., Wantzen, K.M., Eds.; Pensoft: Moscow and Sofia, Russia, 2011; pp. 143–165.
[67]  Valentin, C.; Poesem, J.; Li, Y. Gully erosion: Impacts, factors and control. Catena?2005, 63, 132–153, doi:10.1016/j.catena.2005.06.001.
[68]  Hammond, D.S.; Rosales, J.; Ouboter, P.E. Managing the Freshwater Impacts of Surface Mining in Latin America; IDB Technical Note 519; Inter-American Development Bank: Washington, DC, USA, 2013; p. 36.
[69]  Wang, J.J.; Lu, X.X.; Liew, S.C.; Zhou, Y. Retrieval of suspended sediment concentrations in large turbid rivers using Landsat ETM+: An example from the Yangtze River, China. Earth Surf. Process. Landf.?2009, 34, 1082–1092, doi:10.1002/esp.1795.
[70]  CARBIOCIAL (Carbon Sequestration, Biodiversity and Social Structures in Southern Amazonia: Models and Implementation of Carbon-Optimized Land Management Strategies) Project. Available online: http://www.carbiocial.de/ (accessed on 24 September 2013).


comments powered by Disqus

Contact Us



微信:OALib Journal