全部 標題 作者
關鍵詞 摘要

Agriculture  2013 

Uncovering the Footprints of Erosion by On-Farm Maize Cultivation in a Hilly Tropical Landscape

DOI: 10.3390/agriculture3030556

Keywords: degraded soils, soil nutrients, inclination positions, mineral fertilizers

Full-Text   Cite this paper   Add to My Lib


A hilly region in Sri Lanka was considered to be degraded by erosion driven by intensive tobacco production, but what are reliable indicators of erosion? In addition to determining soil chemical and physical traits, maize was cropped with Nitrogen, Phosphorus and Potassium (NPK, PK) recommended mineral fertilization and without fertilizer (ZERO) in two major seasons(October–January in 2007/2008 and 2008/2009—Seasons 1 and 2 respectively) on 92 farms at inclinations ranging from 0% to 65%. In a subset of steep farms ( n = 21) an A horizon of 6 cm rather than of 26 cm was strong proof of erosion above 30% inclination. Below the A level, the thickness of the horizon was unaffected by inclination. Soil organic matter contents (SOM) were generally low, more so at higher inclinations, probably due to greater erosion than at lower inclination. Maize yields decreased gradually with increasing inclination; at ZERO, effects of climate and soil moisture on yield were easier determined and were probably due to long-term erosion. However, despite an initial set of 119 farms, an exact metric classification of erosion was impossible. NPK strongly boosted yield. This was a positive sign that the deficits in chemical soil fertility were overriding physical soil weaknesses. The study illustrated that chemical soil fertility in these soils is easily amenable to modifications by mineral and organic manures.


[1]  Doran, J.W. Renewable agriculture and food systems (editorial material). Renew. Agric. Food Syst. 2007, 22, 80, doi:10.1017/S1742170507001871.
[2]  Wood, S.; Sebastian, K.; Scherr, S.J. Pilot Analysis of Global Ecosystems: Agroecosystems; International Food Policy Research Institute and World Resource Institute: Washington, DC, USA, 2000; pp. 1–75.
[3]  Craswell, E.T.; Sajjapongse, A.; Howlett, D.J.B. Agroforestry in the management of sloping lands in Asia and the Pacific. Agroforest Syst. 1998, 38, 121–137.
[4]  Wu, J.; Hobbs, R. Key issues and research priorities in landscape ecology: An idiosyncratic synthesis. Landsc. Ecol. 2002, 17, 355–365, doi:10.1023/A:1020561630963.
[5]  Kaihura, F.B.S.; Kullaya, I.K.; Kilasara, M. Soil quality effects of accelerated erosion and management systems in three eco-regions of Tanzania. Soil Till. Res. 1999, 53, 59–70, doi:10.1016/S0167-1987(99)00077-X.
[6]  Francia, M.; Jos, R.; Zuazo, V.H.D.; Raya, A.M. Environmental impact from mountainous olive orchards under different soil-management systems (SE Spain). Sci. Total Environ. 2006, 358, 40–60.
[7]  Lal, R. Enhancing crop yields in developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degrad. Dev. 2006, 17, 197–209, doi:10.1002/ldr.696.
[8]  Sparovek, G.; Schnug, E. Temporal erosion-induced soil degradation and yield loss. Soil Sci. Soc. Am. J. 2001, 65, 1479–1486, doi:10.2136/sssaj2001.6551479x.
[9]  Loveland, P.; Webb, J. Is there a critical level of organic matter in the agricultural soils of temperate regions: A review. Soil Till. Res. 2003, 70, 1–18, doi:10.1016/S0167-1987(02)00139-3.
[10]  Majumder, B.; Mandal, B.; Bandyopadhyay, P.K. Organic amendments influence soil organic carbon pools and rice-wheat productivity. Soil Sci. Soc. Am. J. 2008, 72, 775–785, doi:10.2136/sssaj2006.0378.
[11]  Fageria, N.K. Green manuring in crop production. J. Plant Nutr. 2007, 30, 691–719, doi:10.1080/01904160701289529.
[12]  Giardina, C.P.; Sanford, R.L.; Dockersmith, I.C. The effects of slash burning on ecosystem nutrients during the land preparation phase of shifting cultivation. Plant Soil 2000, 220, 247–260, doi:10.1023/A:1004741125636.
[13]  Katyal, J.C.; Rao, N.H.; Reddy, M.N. Critical aspects of organic matter management in the tropics: The example of India. Nutr. Cycl. Agroecosys. 2001, 61, 77–88, doi:10.1023/A:1013320502810.
[14]  Steiner, C.; Teixeira, W.G.; Lehmann, J.; Nehls, T.; de Macedo, J.L.V.; Blum, W.E.H.; Zech, W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 2007, 291, 275–290, doi:10.1007/s11104-007-9193-9.
[15]  Sisti, C.P.J.; Sanotos, H.P.; Kohhann, R.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M. Changes in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil Till. Res. 2004, 76, 39–58, doi:10.1016/j.still.2003.08.007.
[16]  Macedo, M.O.; Resende, A.S.; Garcia, P.C.; Boddey, R.M.; Jantalia, C.P.; Urquiaga, S.; Campello, E.F.C.; Franco, A.A. Changes in soil C and N stock and nutrient dynamics 13 years after recovery of degraded land using leguminous nitrogen-fixing trees. For. Ecol. Manag. 2008, 255, 1516–1524, doi:10.1016/j.foreco.2007.11.007.
[17]  Egodawatta, W.C.P.; Sangakkara, U.R.; Stamp, P. Impact of green manure and mineral fertilizer inputs on soil organic matter and crop productivity in a sloping landscape of Sri Lanka. Field Crop Res. 2012, 129, 21–27, doi:10.1016/j.fcr.2012.01.010.
[18]  Van Holm, L.H.J. Soil Organic Matter Dynamics in Sri Lanka Soil. In Soil Organic Matter Dynamics and the Sustainability of Tropical Agriculture; Mulongoy, K., Merckx, R., Eds.; John Wiley & Sons Ltd: Ghent, Belgium, 1991; pp. 76–126.
[19]  Eilers, R.J.; Lylek, G.W.; Goh, T.B.; Mapa, R.B.; Dassanayake, A.R. Development and application of a national digital soil data base for land resource planning in Sri Lanka. J. Soil Sci. Soc. Sri Lanka 2003, 15, 45–57.
[20]  Sainju, U.M.; Singh, B.P. Tillage, cover crop, and kill-planting date effects on corn yield and soil nitrogen. Agron. J. 2001, 93, 878–886, doi:10.2134/agronj2001.934878x.
[21]  Dinnes, D.L.; Karlen, D.L.; Jaynes, D.B. Nitrogen management strategies to reduce nitrate leaching in tile-drained Midwestern soils. Agron. J. 2002, 94, 153–171, doi:10.2134/agronj2002.0153.
[22]  Al-Kaisi, M.; Licht, M.A. Effect of strip tillage on corn nitrogen uptake and residual soil nitrate accumulation compared with no-tillage and chisel plow. Agron. J. 2004, 96, 1164–1171, doi:10.2134/agronj2004.1164.
[23]  Pett-Ridge, J.; Silver, W.L.; Firestone, M.K. Redox fluctuations frame microbial community impacts on N-cycling rates in a humid tropical forest soil. Biogeochem. 2006, 81, 95–110, doi:10.1007/s10533-006-9032-8.
[24]  Pennock, D.J. Effects of Soil Redistribution on Soil Quality: Pedon, Landscape and Regional Scale. In Soil Quality for Crop Production and Ecosystem Health; Gregoritch, E.G., Carter, M.R., Eds.; Elsevier: Amsterdam, The Netherlands, 1997; pp. 167–185.
[25]  Cotching, W.E.; Hawkins, K.; Sparrow, L.A.; McCorkell, B.E.; Rowley, W. Crop yields and soil properties on eroded landscape of red ferrosols in north-west Tasmania. Aust. J. Soil Res. 2002, 40, 625–642, doi:10.1071/SR01062.
[26]  Vezina, K.; Bonn, F.; Van, C.P. Agricultural land-use patterns and soil erosion vulnerability of watershed units in Vietnam’s northern highlands. Lands. Ecol. 2006, 21, 1311–1325, doi:10.1007/s10980-006-0023-x.
[27]  Lal, R. Deforestation and land-use effects on soil degradation and rehabilitation in western Nigeria. 2. Soil chemical properties. Land Degrad. Dev. 1996, 7, 99–119, doi:10.1002/(SICI)1099-145X(199606)7:2<99::AID-LDR220>3.0.CO;2-F.
[28]  Valentin, C.; Rajot, J.L.; Mitja, D. Responses of soil crusting, runoff and erosion to fallowing in the sub-humid and semi-arid regions of West Africa. Agric. Ecosyst. Environ. 2004, 104, 287–302, doi:10.1016/j.agee.2004.01.035.
[29]  De Silva, G.R.R.; Dassanayaka, A.R.; Mapa, R.B. Soils of Mid Country Intermediate Zone. In Soils of the Intermediate Zone of Sri Lanka. Special Publication 4; Mapa, R.B., Dassanayake, A.R., Nayakekorale, H.B., Eds.; Soil Science Society of Sri Lanka: Peradeniya, Sri Lanka, 2005; pp. 105–150.
[30]  Sipaseuth, N.; Attanandana, T.; Vichukit, V. Subsoil nitrate and maize root distribution in two important maize soils in Thailand. Soil Sci. 2007, 172, 861–875, doi:10.1097/ss.0b013e318154b551.
[31]  Tittonell, P.; Vanlauwe, B.; Corbeels, M. Yield gaps, nutrient use efficiencies and response to fertilisers by maize across heterogeneous smallholder farms of western Kenya. Plant Soil 2008, 313, 19–37, doi:10.1007/s11104-008-9676-3.
[32]  Zingore, S.; Murwira, H.K.; Delve, R.J. Influence of nutrient management strategies on variability of soil fertility, crop yields and nutrient balances on smallholder farms in Zimbabwe. Agric. Ecosyst. Environ. 2007, 119, 112–126, doi:10.1016/j.agee.2006.06.019.
[33]  Bandara, K.R.M.U.; Samarakoon, L.; Shrestha, R.P.; Kamiya, Y. Automated generation of digital terrain model using point clouds of digital surface model in forest area. Remote Sens. 2011, 3, 845–858, doi:10.3390/rs3050845.
[34]  Thomas, G.W. Soil pH and Soil Acidity. In Methods of Soil Analysis. Part 3. Chemical Methods; Bigham, J.M., Bartels, J.M., Eds.; American Society of Agronomy, Soil Science Society of America (ASA-SSSA): Madison, WI, USA, 1996; pp. 475–490.
[35]  Van Ranst, E.; Verloo, M.; Demeyer, A.; Pauwels, J.M. Manuals for the Soil Chemistry and Fertility Laboratory; University of Gent: Gent, Belgium, 1999; p. 243.
[36]  Dharmakeerthi, R.S.; Indraratne, S.P.; Kumaragamage, D. Manuals of Soil Sampling and Analysis; Soil Science Society of Sri Lanka: Peradeniya, Sri Lanka, 2007; pp. 57–61.
[37]  Bray, R.H.; Kurtz, L.T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1954, 59, 39–45, doi:10.1097/00010694-194501000-00006.
[38]  Regional Fertilizer Recommendations: Agriculture Inspectors’ Hand Book; Department of Agriculture: Peradeniya, Sri Lanka, 1995; pp. 34–35.


comments powered by Disqus

Contact Us



微信:OALib Journal